
DRAFT

Modules for JavaScript
Simple, Compilable, and Dynamic Libraries on the Web

David Herman
Mozilla Research

dherman@mozilla.com

Sam Tobin-Hochstadt ∗

Northeastern University
samth@ccs.neu.edu

Abstract
Building reusable libraries and reliable, maintainable pro-
grams requires modular design, yet JavaScript currently pro-
vides little support for modularity. In this paper, we present
the design of a module system for JavaScript. Our design is
currently the basis for the module system in the next version
of the JavaScript standard.

The design provides a simple model for programmers
and supports developing both client-side applications in
the browser as well as standalone, server-side applications.
Modules in our system are lexically scoped, may be nested
and recursive, and can be statically loaded from external
sources, allowing existing programs to be refactored nat-
urally. In addition to static modules, our design provides
a flexible mechanism for dynamically loading code that
maintains isolation from untrusted modules. Finally, the sys-
tem supports programmatic transformation and validation of
code, supporting emerging practices in the JavaScript com-
munity.

1. Introduction
Today, JavaScript is used in all manner of settings, from tiny
web page animations to huge applications with hundreds of
thousands of lines of code and hundreds of millions of users.
New libraries appear all the time, and modern applications
make use of a wide variety of frameworks. Yet all of this
development takes place in a language that provides next to
no support for modularity, a key tool for building reusable
and reliable software: JavaScript has no module system.

In this paper, we present the design of a module system
for JavaScript. Our design is driven by our support of three
key features: simplicity, to make it easy for programmers
to adopt; static scope, to support compilation and reasoning
about programs, and dynamic loading, to support execution
of new modules in controlled environments. To make our
system simple, we avoid restrictions on how modules can
be composed: modules may be nested inside other modules,
be mutually recursive, and be easily loaded from external
files. We do not require complex metadata such signatures,
headers, or linking specifications. To make our system com-

∗ Supported by a gift from the Mozilla Foundation.

pilable, we provide static scope with compile-time errors for
unbound variables even in the presence of remote code load-
ing. To support dynamic loading, we provide an expressive
system of module loaders, with control over the sharing of
resources and privileges, validation for security, and support
for languages such as Caja and CoffeeScript that compile to
JavaScript.

The primary use case for JavaScript programs is cur-
rently client-side dynamic web applications, hosted in web
browsers. Accordingly, our design focuses on this use case,
from separating file names from module names to support-
ing isolation for creating mashups. However, JavaScript is
rapidly growing in other environments, and we have avoided
baking web-only assumptions into our design.

The state of JavaScript modularity Of course, modern
JavaScript programmers do not entirely forego modularity.
Instead, they use existing language mechanisms to build
abstractions that mimic module systems. The primary tools
are closures and objects, often combined in what is known
as the module pattern. Using an example from node.js [Dahl
2011], the essence of the pattern is:

var Server = (function() {
var handler = function(req, res) { ... };
return {

go: function() {
http.createServer(handler).listen(80);
console.log("Server running!");

}
};

})();

This pattern uses objects, here with the property go, to rep-
resent modules, and creates a closure to encapsulate private
data such as the handler variable. Additionally, standard
practice is to have only one global name for a module (here
Server), with all other parts of the library available as prop-
erties of that single globally-bound object. The http library
is a global variable, presumably created in similar fashion.

While this pattern does provide namespace management
and encapsulation, it falls short on several fronts. First, as a
pattern rather than a language element, it requires effort on

Modules for JavaScript 1 2011/5/20

the part of the programmer to use correctly and to recognize
when reading code. Second, although the pattern reduces
pollution of the global environment, it does not eliminate
it—every module adds a name to the top-level environment,
and the module author, rather than the client, chooses the
name. Third, the abstraction offered by the module pattern
can be violated easily if private variables escape, or if the
“exports” of the module are mutated. Fourth, compilers have
a difficult time using this pattern to drive optimization, even
when the programmer ensures that private state is hidden or
that exports are immutable.

To alleviate these problems, a variety of JavaScript li-
braries and frameworks have been proposed to support mod-
ularity in JavaScript. In particular, CommonJS [Dangoor
et al. 2009] provides a module system built on top of exist-
ing JavaScript constructs. However, the CommonJS module
system and related designs are limited in several ways: they
cannot extend the syntax of the language, they do not provide
new scoping constructs, and they aim primarily at server-
side environments. By proposing a revision to the language,
we can lift these restrictions and provide a simpler, cleaner,
and more expressive design.

The basic structure of our design is outlined in our version
of the Server example:

module Server {
module http = require "http";
function handler(req, res) { ... };
export function go() {

http.createServer(handler).listen(80);
console.log("Server running!");

}
}

Now, http is a module instead of a global variable, exports
and imports are clear and declarative, and the structure of the
program is apparent to both programmers and tools.

To describe our system, we begin with an overview of
the design space for JavaScript modules (§2) and an explo-
ration of our design with additional examples (§3). We then
describe the detailed semantics of both static modules (as
seen here) and dynamic loading (§4–5). Finally, we discuss
related work and conclude.

The status of our design This paper describes our work
on Ecma TC39, the technical committee responsible for the
specification of the JavaScript programming language, to de-
sign a module system for the next edition of the JavaScript
standard. The system we present has been presented for in-
clusion in the next edition of the language standard,1 and has
received the consensus of the committee as the foundation of
module system design for JavaScript.

We have developed an initial prototype implementation
of our design in the Narcissus meta-circular JavaScript inter-

1 The standardized language is referred to as ECMAScript.

preter,2 a testbed for JavaScript language design. Our proto-
type supports the use of local, scoped modules but not ex-
ternal modules and module loaders. Initial experience with
the prototype is positive, but more work remains before it is
ready for production use.

2. Design space
JavaScript poses many challenges and constraints for the
design of a module system. Many of these challenges arise
from unique characteristics of the web platform, JavaScript’s
most important use case. Here, we outline some of the
key design considerations that inform our approach to a
JavaScript module system.

2.1 Scripting convenience
As a scripting language, JavaScript owes much of its suc-
cess to its accessibility and simplicity. A module system for
a scripting language should impose a minimum of bureau-
cratic infrastructure on programs. In particular, the process
of refactoring a global script into a reusable library should
require very little decoration of the program with library
metadata.

Moreover, to minimize the cost to developers of modu-
larizing their scripts, a module system should allow them
to divide up their program at arbitrary points. In particu-
lar, JavaScript should admit recursive modules. Module sys-
tems that disallow cyclic dependencies force programmers
to make pervasive changes to the organization of their pro-
grams. The language should accommodate itself to the pro-
grammer’s design, not the other way around.

2.2 Static scope in a dynamic environment
Modularizing a program involves grouping related defini-
tions into logical units that can be shared and reused. Each
module is essentially a collection of published definitions,
whose exports form an API. Module imports and exports are
therefore quite static in nature. Using this static information
to provide compile-time binding and linking is valuable to
programmers for catching early errors, and avoids making
programs susceptible to dynamic variable capture based on
a global namespace that may change at runtime.

At the same time, the web is a dynamic environment.
Pages are loaded over the network, and scripts are processed
by the browser and dynamically evaluated. The presence
of eval in JavaScript and the ability to add new script
elements dynamically to a page make it possible to load
additional code at runtime.

Moreover, the nature of software distribution on the web
mean that web application writers do not control the browser
vendor and version used by the client, leading to platform
inconsistencies. Because JavaScript programs are evaluated
dynamically by the client’s browser, applications must make

2 https://github.com/mozilla/narcissus

Modules for JavaScript 2 2011/5/20

http://github.com/mozilla/narcissus

dynamic decisions based on the presence or absence of spe-
cific features and functionality.

Thus, a module system for JavaScript should provide
static variable resolution and linking while also accommo-
dating the dynamic usage patterns prevalent on and neces-
sary for the web platform.

2.3 Naming on the web
The key to code reuse is to make as few assumptions as pos-
sible about the context in which clients will use a library.
Modules help programmers achieve this goal by avoiding
global variables and facilitating information hiding, but the
system must still provide a mechanism for publishing mod-
ules and making them accessible to the rest of a program.
This raises the question of module naming.

Clearly, at the scale of the web, creating a global reg-
istry for publishing modules would not only be difficult to
design but completely impractical to make efficient. In the
limit, such a registry would probably look like the Internet
itself! Without any kind of registration mechanism, though,
providing a unique name for a library relies on program-
mers following protocols such as Java’s “reverse DNS” id-
iom, or user-hostile mechanisms such as globally unique
identifiers. These approaches tend to result in inappropri-
ate or even human-unreadable module names. Besides, a
lightweight module system should make it easy to create a
library without worrying about such issues.

2.4 Diverse delivery platforms
Another consideration in publishing modules is the question
of retrieving modules from external resources. Traditionally,
most languages or language implementations integrate into
a local filesystem to find external modules. Sometimes this
takes the form of explicit paths, and sometimes languages
providing automatic mechanisms for finding modules in the
filesystem based on their name. Some languages also use the
file system canonicalize module references by file identity.

These approaches do not translate directly to the web.
In general, web pages do not have access to a user’s local
filesystem. They do, however, need the ability to fetch mod-
ules from servers. JavaScript modules must therefore sup-
port loading from external URLs, and cannot depend on file
system assumptions.

JavaScript is already capable of loading from exter-
nal files using standard web APIs. Libraries such as Re-
quireJS [Burke 2011] provide conveniences for retrieving
JavaScript source files from remote servers and executing
them via eval. But because the sequential control flow
model of JavaScript demands non-blocking, asynchronous
I/O, RequireJS is forced to employ callbacks to request the
files. Painfully, this forces client programs to nest their con-
tents within the body of the callback of the module request:

require(["a.js","b.js","c.js"],
function(a, b, c) {

...
});

This style imposes a heavy syntactic cost on client code.
A module system for JavaScript should allow for simple,
declarative loading of external files, but it must achieve
this without introducing blocking I/O into the main event-
processing loop of a web page.

Web applications are not the only consumers of JavaScript,
even if they are the biggest. JavaScript is used as an embed-
ded scripting languages in a number of environments such
as the Java standard library [?]. Recently, JavaScript has
rapidly gained popularity as a programming language for
server programming, especially with the emergence of the
node.js [Dahl 2011] server platform. On these platforms,
modules should have access to the conventional filesystem
as with traditional languages. Even on the web, program-
mers may wish to circumvent the usual URL schemes to use
content delivery networks or custom library repositories. All
of these needs call for flexible mechanisms that support a
diversity of semantics for locating external modules.

2.5 Sharing and isolation
JavaScript programs operate on highly mutable data, includ-
ing its standard libraries. Web applications routinely take ad-
vantage of this mutability to patch existing objects with new
functionality. So in order to migrate existing applications to
modules, as well as to allow modules to communicate use-
fully with one another, they must be able to share state.

At the same time, this pervasive mutability can be prob-
lematic. Web applications that combine separately devel-
oped and possibly mutually untrusted code often need to
execute separate components in isolated contexts, to pre-
vent unintended or malicious mutation. For example, secu-
rity frameworks such as Google’s Caja [Caja Team 2011]
freeze standard objects to close off exploitable communica-
tion channels. Another example where isolation is desirable
is in online integrated development environments (IDE’s)
such as ACE [Ajax.org 2007] or CodeMirror [Haverbeke
2007]. When a user executes a program they are editing, the
executed code should not be able to affect the state of the
IDE implementation.

Thus a module system for JavaScript should provide pro-
grammers with fine-grained control over sharing and isola-
tion.

2.6 Extensible compilation
A final desideratum for a module system is the ability to
tap into the loading process to execute custom compilation
hooks. Modern production web applications typically em-
ploy build processes that manipulate JavaScript code in a
number of ways:

• running style checkers such as JSLint [Crockford 2002]
or JSHint [Kovalyov 2010];

• performing security analyses;

Modules for JavaScript 3 2011/5/20

• running code optimizers such as Google’s Closure com-
piler [Closure Tools Team 2009]; or

• compiling alternative source languages such as Coffee-
Script [Ashkenas 2010].

Running build processes offline can be crucial for perfor-
mance, but it introduces a roadblock in the development pro-
cess. It also makes it difficult for developers of new lan-
guages, dialects, or code processors to acquire users, since
it raises the barrier to entry for users who are accustomed
to JavaScript’s lightweight edit-reload development process.
Letting programs hook into the compilation process would
make it possible to deploy code processors as libraries, mak-
ing it easy to explore and experiment with the tools.

3. Design overview
We begin by presenting a sequence of examples to illus-
trate the fundamental design of our system as it is seen by
JavaScript programmers.

3.1 Importing and exporting
The simplest use of modules is as a collection of definitions,
some of which are exported. The following Math module
exports two bindings, sum and pi. The three binding is not
exported, and therefore not accessible from outside the Math
module.

module Math {
export function sum(x, y) {

return x + y;
}
export var pi = 3.141593;
var three = 3;

}

To use the Math module, a client can import some or all of
the exported bindings.

module Client {
import Math.sum;
sum(4,5);

}

Imports are possible at the top level of JavaScript programs,
as well:

import Math.{sum, pi};
alert("2pi = " + sum(pi, pi));

All bindings in these examples are statically resolved; at-
tempting to import three or reference a non-existent vari-
able is a compile-time error, unlike in existing JavaScript
programs where unbound top-level variables evaluate to the
undefined value, or can be dynamically given a value via
assignment before they are referenced.

Programmers can also import all bindings from a module,
using import Math.*, and rename bindings on import, as in
import Math.{sum: plus}, binding the name plus.

Modules can be nested within other modules, and ex-
ported just as with other bindings.

module Math {
export module Arith {

export function sum(x,y) ...
}
export module Trig {

export function cos(x) ...
}

}

Subsequent modules can then import Math.Arith.sum to
bind the sum function in their scope.

Additionally, modules can simply be referenced, produc-
ing a module instance object, which is a first-class reflection
of the exported bindings of a module.

module A = Math.Arith;
A.sum(3,4);

Here, the program indexes directly into Arith as an ob-
ject. Although this technically uses the A module instance
object as a first-class value, the syntactic structure of the
variable reference is apparent and can be easily optimized
by the compiler, just as if the programmer had imported
sum directly. Of course, A can also be used in truly first-
class fashion—as an argument to functions, as an element
of data structures, or in any other way programmers can use
JavaScript objects.

Module instances can contain mutable state, as in this
implementation of a counter:

module Counter {
var counter = 0;
export function inc() { return counter++; }
export function cur() { return counter; }

}

3.2 Recursive modules
Module nesting provides a natural home for recursive mod-
ules. Any module in a single scope can refer to and import
from any other module in that scope. For example, the clas-
sic mutually-recursive Even and Odd can be defined by:

module Numbers {
export module Even {

import Odd.odd;
export function even(x) {

return x == 0 || odd(x - 1);
}

}
export module Odd {

import Even.even;
export function odd(x) {

return x != 0 && even(x - 1);
}

}

Modules for JavaScript 4 2011/5/20

}

To determine scoping, all exports of all modules in a scope
are collected prior to compiling the bodies of the individual
modules. Initialization of module bindings is performed in
program order, from top to bottom.

3.3 Requiring external modules
Since the primary use case for JavaScript is currently deploy-
ment in client-side web applications, it is vital for program-
mers to load modules from external source, and even other
web sites. The following example defines a module JSON
based on the contents of a file loaded from the json.org
site.

module JSON =
require ’http://json.org/modules/json2.js’;

alert(JSON.stringify({’hi’: ’world’}));

One key element of the design evident here is that json2.js
is not expected to supply the JSON module, but the contents
of that module. This allows the requireing module to de-
cide that name that will be used for the resulting module,
and avoids name clashes without the need for complex nam-
ing conventions.

Of course, the external file can contain modules, which
become nested modules when required, as in the following
example:

module YUI =
require ’http://yahoo.com/modules/yui3.js’;

alert(YUI.dom.Color.toHex("blue"));

Here, the yui3.js file exports the dom module, which in turn
has Color, another module, as an export.

3.4 Local and standard modules
Of course, not every module is loaded from a remote location
over the web. JavaScript is increasingly used in server-side
environments, where loading from the file system is the pri-
mary case, as in most other programming languages. Addi-
tionally, every instantiation of JavaScript provides a standard
library, which modules must be able to require.

Our design supports both of these use cases. We indicated
standard modules with the @ symbol as a prefix—this en-
sures that no potentially valid URL overlaps with standard
modules. Local modules can appear just as relative requires,
without needing complex URL schemes. The following ex-
ample demonstrates both of these features, assuming an en-
vironment where the standard library includes a cmdline
binding, and a Lexer library is available.

module stdlib = require ’@std’;
module Lexer = require ’compiler/Lexer’;

Lexer.scan(stdlib.cmdline[0])

3.5 Dynamic loading and evaluation
To reduce latency or make dynamic decisions, JavaScript
code is often loaded dynamically during program execu-
tion. Our module system supports this using module load-
ers, which encapsulate module instances for reflective ac-
cess. Module loaders can be used for secure encapsulation
and many other purposes, but at their most basic, they allow
dynamic loading of code, as in this example.

loader.load(’http://json.org/json2.js’,
function(JSON) {

alert(JSON.stringify([0, {a: 1}]));
});

Here, in keeping with JavaScript’s prohibition on block-
ing I/O, the load method takes a callback that is run once
the json2.js code is fetched, compiled, and evaluated.
The callback function is passed the reified module instance,
which is simply an object with properties for each of the
original module’s exports.

Module loaders also support simply evaluating strings of
code, as in

loader.eval("3 + 4")

which produces 7, of course. Since eval is a synchronous
method without a callback argument, the code provided to
eval must not require any non-builtin modules; if this
were allowed, then calls to eval would sometime block. For
code that should be allowed to perform I/O, an asynchronous
evalAsync method is provided.

3.6 Custom module loaders
Module loaders support more than just dynamic loading of
JavaScript code in the manner of existing JavaScript sys-
tems. They also provide facilities to selectively share state
with potentially-untrusted third parties, to reject calls to
load or eval based on the source or URL of the code, and
to transform programs from arbitrary other languages into
JavaScript.

Isolating and sharing state A module loader encapsulates
a mapping from module names to their instantiations. Since
modules contain state, a module instantiation is a stateful
object, and two module loaders which share an instantiation
share the associated state. Given a loader, we can share an
existing module with it:

module M { ... }
loader.defineModule("newM", M)

This example makes use of automatic reflection of M as a
module instance. The use of defineModule makes sharing
between module loaders explicit, and gives the programmer
control over which state an inner module loader can see. In
this case, newM is available to code evaluated in loader, but
not M.

Modules for JavaScript 5 2011/5/20

Since globally-available objects in JavaScript such as
Object and Array are mutable, module loaders can also
create new versions of these primitive objects to avoid cre-
ating unwanted channels of communication.

Checking and validating dynamic loads In addition to
defining the scope and state available to dynamic loading and
evaluation, module loaders can also interpose on that evalu-
ation, potentially rejecting attempts to load from a particular
site, or evaluate code that fails a required test.

For example, we can construct a module loader that re-
jects any attempt to use XMLHttpRequest, based on the static
analysis of Guha et al. [2010]. Then this call to eval will be
dynamically rejected:

loader.eval("new XMLHttpRequest()")

as will any attempt to load code that uses XHR, including
via any further module loaders in the scope of loader.

Translating to JavaScript As the only language sup-
ported in all modern web browsers, JavaScript now sees
wide use as a target language, with compilers written
from CoffeeScript [Ashkenas 2010], Java [Google], Flap-
jax [Meyerovich et al. 2009], JavaScript itself [Closure Tools
Team 2009], and many others. However, all of these trans-
lations currently take place ahead of time and outside the
JavaScript toolchain, complicating deployment and develop-
ment. With module loaders, we can define translation hooks,
which can take arbitrary source code, translate it, and pass
it on to their context for evaluation. For example, with a
CoffeeScript module loader, we could call:

csLoader.load("mod.coffee", callback)

where "mod.coffee" is the file:

math =
root: Math.sqrt
square: square
cube: (x) -> x * square x

The function callback is thus called with a module instance
with the math export, and can use this just as if it were an
ordinary JavaScript object. Translation via module loaders
opens up the possibilities of new languages that can be
written and deployed entirely as JavaScript libraries.

4. The core system
In this section, we present our design of the core module
system. This includes module declarations with imports and
exports, static scoping and linking, and evaluation. For now,
we assume a single compilation and evaluation session with
a single global environment. We revisit this assumption in
Section 5, where we discuss dynamic loading and multiple
global contexts.

4.1 Static scope
At its heart, JavaScript is a lexically scoped programming
language. Unfortunately, the language also includes a few
constructs that involve dynamic variable binding. These fea-
tures are notorious for being difficult to use reliably and for
degrading performance in modern optimizing JavaScript en-
gines. They include:

• the with statement, which extends a lexical environment
with a dynamically computed object;

• unprotected eval, which dynamically evaluates a string
as a JavaScript program, and extends the local environ-
ment with the evaluated program’s global variables; and

• the global object, which reflects the initial frame of the
lexical environment as a mutable object that is exposed
to JavaScript programs.

JavaScript implementations have recently begun to support
a “strict” dialect, which disallows the use of with and pro-
tects calls to eval with a fresh environment record. How-
ever, a motivating goal of the revised standard is to support
full static scoping, with compile-time checking of variable
references and assignments. To that end, we make the ad-
ditional restriction that JavaScript programs cannot dynami-
cally remove global variables.

Modules play a central role in this new static semantics
for JavaScript. Module definitions, as well as import and
export declarations, are declarative constructs which are
processed at compile-time. The complete hierarchy of de-
clared modules in a JavaScript program is statically fixed, as
is each module’s set of exports.

4.2 Dynamic reflection
Modules are bound in the same environment as other vari-
ables. As such, they can easily be reflected as first-class mod-
ule instance objects simply by referring to them in expres-
sions:

module M {
export var x = 1, y = 2, z = 3;

}
print(Object.keys(M)); // x, y, z

While any variable may be bound at runtime to a mod-
ule instance object, only those variables bound via module
carry the additional static information used for compile-time
checking. We refer to such bindings as static module bind-
ings. For example, consider the following declarations:

module M { ... }
import M.*;

The module M is declared via a module declaration and is
thus a static module binding. This means that the import
declaration below the declaration of M is legal. However, if
we bind an ordinary variable to a module instance object, no
such import is possible:

Modules for JavaScript 6 2011/5/20

module M { ... }
var x = M;
import x.*; // compile-time error

Because x is assigned its value dynamically, its contents
cannot be statically determined, so importing from x would
require dynamic scoping.

4.3 Resolution
In order to support static scoping, we introduce a resolution
phase which precedes evaluation. The resolution process tra-
verses a program with a lexical environment, checking for
references or assignments to unbound variables and prevent-
ing evaluation from occurring if any are found. Resolution
occurs in the context of a global namespace, which indicates
the current set of global variables and is fixed at compilation
time.

The scoping and linking semantics of modules is care-
fully designed to avoid complicated validation algorithms,
even in the presence of recursive modules. This helps main-
tain fast compilation and also rules out certain problematic
or ambiguous programs. The design relies on the following
key restrictions:

1. It is illegal to export a module that is not defined locally.

2. The export construct does not allow wildcards for ex-
porting sets of bindings (e.g., export M.*;).

3. Static module bindings can only be bound with the
module form.

Restriction (1) ensures that module paths are acyclic and can
be evaluated via a simple structural recursion. Restriction (2)
rules out complex cyclic relationships in module export sets,
including ambiguous declarations such as:

module M {
export N.*;

}
module N {

export M.*;
}

Restriction (3) deserves a closer look. Consider a module
M that exports a child module N. A client can create a local
module binding via a module declaration, from which the
client can import subsequent bindings x, y, and z:

module N = M.N;
import N.{ x, y, z };

Attempting to bind N via import produces a compile-time
error:

import M.N; // error

Similarly, the import M.*; convenience form only imports
the variable exports of M, excluding any of its exported sub-
modules.

Restriction (3) simplifies the resolution process, making
it possible at each scope to process all module declarations
before import declarations. This avoids tricky mutual de-
pendencies between the module paths in import declara-
tions and the modules that they bind, which could lead to
paradoxical declarations such as:

module M {
export module N {

export module M { ... }
}

}
import M.N;
import N.M;

The tree of module definitions is discovered at parse time,
at which point the set of declared exports for each module is
known. The process of statically resolving a module leaves
it in a partially linked state:

1. Each module declaration is bound statically to its source
definition. This can be fully resolved at this stage, and
must be validated to reject cyclic definitions.

2. Each import declaration such as import M.{ x: y };
is processed by locally binding y to the declared export x
of the module referred to by M.

3. Each export declaration such as export { x: N.y };
is partially linked by pointing the export x to the declared
export y of the module referred to by N. If no such export
of module N exists, the program is rejected.

4.4 Linking
After resolution completes, modules are fully linked by
chasing export links down to their ultimate source defini-
tions. This process must check for and reject cyclic or invalid
exports.

4.5 Evaluation
Evaluation of modules proceeds top-down, like other block
forms in JavaScript. At the start of evaluation, all module in-
stance objects are pre-allocated, but their exports are unini-
tialized. At the top level of a module, the special JavaScript
variable this is bound to that module’s instance object.
Analogous to the use of this in object constructors, the body
of a module to store references to the module instance object.

4.6 External modules
Modules can be loaded from external resources via a URL:

module M = require ’http://example.com/m.js’;

The module loader in charge of compiling the declaration
determines how to load the source file and whether it has
already been loaded (see Section 5). External modules that
are required multiple times are only evaluated at their first
evaluated require declaration.

Modules for JavaScript 7 2011/5/20

The contents of an external module includes the body of
the module, but not the module declaration itself. Crucially,
this allows clients of a third-party library to decide for them-
selves what local name to provide for the library. This obvi-
ates the need for a global registry of names, or inconvenient
and brittle naming practices such as Java’s “reverse DNS”
convention.

External modules are compiled and evaluated in an initial
scope that includes only the global namespace.

5. Module loaders
This section describes the module loader API, which pro-
vides powerful facilities for dynamic code evaluation, com-
pilation hooks, and code and state isolation (sandboxing).

In Section 4, we described the behavior of a single com-
pilation and evaluation session. Module loaders generalize
this behavior: compilation and evaluation are always per-
formed in the context of a specific module loader, and a pro-
gram may create multiple loaders. Module loaders encapsu-
late several pieces of information that affect compilation and
evaluation behavior:

• a global namespace, mapping global variable names to
values;

• a module instance cache, storing module instance objects
for externally required modules; and

• evaluation and loading hooks, which provide custom be-
havior for compilation.

All compiled code is permanently associated with the
loader with which it was compiled. This association is used
to override the behavior of the JavaScript eval operator3, as
well as the require form.

5.1 The system module loader
A JavaScript host environment must provide a built-in sys-
tem module loader, which provides system-specific loading
and compilation behavior. In the context of a web browser,
this loader is reflected as an object and made accessible to
programs via a global ModuleLoader variable, which satis-
fies the API described in this section.

5.2 Managing global namespaces
Every module loader encapsulates a global namespace,
which is a mapping from variable names to values. Pro-
grams compiled and evaluated by the loader use this global
namespace to interpret global variables (see Section 4).

The global namespace can be dynamically extended with
new bindings. However, such bindings have no effect on
code that has already been compiled, since any references
to those non-existent bindings would have been rejected

3 Technically, JavaScript’s eval is not an operator but a function. However,
the rules that determine when a call to eval can be statically detected and
given access to the lexical environment cause it to behave much like an
operator.

during resolution. Newly added bindings do affect code that
is subsequently compiled by the loader.

Module loaders expose the following methods for extend-
ing their global namespace.

loader.defineGlobal(name, val)

This method takes a variable name and a value and creates
or updates a binding in the global namespace.

loader.defineModule(name, mod, key)

This method takes a module name and a module instance
object and creates a module binding in the global names-
pace, throwing an exception if there is already a binding of
the given name. The optional key argument specifies a key
for the module instance cache.

5.3 Dynamic evaluation
One of the most important use cases for module loaders is
dynamic loading and evaluation.

loader.load(url, callback, onerror)

This method takes a URL and two functions and initi-
ates a request to load the module at the given URL asyn-
chronously. The source is loaded from the given URL, com-
piled and evaluated by the module loader. If compilation and
evaluation succeed, the callback function is called with
the module instance object as its argument. Otherwise, the
onerror callback is called with the error as its argument.

loader.evalAsync(src, callback, onerror)

This method takes a source string and two functions and
initiates a request to evaluate the source. Because the source
may contain require directives, evaluating the source may
involve I/O, so the interface is asynchronous. The source
is asynchronously compiled and evaluated by the module
loader. If compilation and evaluation succeed, the callback
function is called with the result of the evaluated program.
Otherwise, the onerror callback is called with the error as
its argument.

loader.eval(src)

This method takes a source string and immediately com-
piles and evaluates the source program. The program is dis-
allowed from containing any require directives, so that
compilation cannot perform I/O. If compilation and evalua-
tion succeed, the result of the evaluated program is returned.
Otherwise an exception is raised.

5.4 Creating custom loaders
The module loader API also allows the creation of custom
loaders, which can override the default system loading and
compilation behavior.

loader.create(resolver, base)

Modules for JavaScript 8 2011/5/20

This method returns a new child module loader of loader.
This parent-child relationship creates a chain of responsibil-
ity for loading. Both for loading external modules and dy-
namically evaluating source code, a child loader is given the
opportunity to transform the source, but the result is then im-
plicitly passed to the parent for subsequent processing. This
ensures that child loaders cannot subvert any invariants en-
forced by parent loaders, and also allows for the composition
of multiple levels of language abstraction.

The optional resolver argument is expected to be an
object and provides the hooks for customizing the loading
and compilation semantics of the loader. The optional base
argument is a “base library,” which we return to below.

5.5 Resolver objects
A resolver object can contain any of the following optional
properties.

resolver.load(url, accept, reject, redirect)

This hook is called by the loader when an external module
is required by loader.load() or by the compilation of a
require directive. The url parameter is a canonicalized
URL string. The accept callback accepts a string, allowing
the hook to perform transformations on the source before
passing it on to the parent loader. The reject callback
accepts an optional error value, allowing the hook to signal a
loading or compilation error. The redirect callback accepts
a URL string, allowing the hook to forward the request to an
alternate URL.

resolver.eval(src, accept, reject)

This hook is called by the loader when source code is
evaluated by loader.evalAsync(), loader.eval(), or a
use of the eval operator. The src parameter is the source
program text. The accept callback accepts a string, again
allowing the hook to transform the source language. The
reject callback accepts an optional error value, allowing
the hook to signal a compilation error.

resolver.resolve(url)

This hook allows custom loaders greater control over the
canonicalization of module URL’s. The hook is called by the
loader before loading a URL; the hook returns an arbitrary
value representing this URL’s key into the loader’s internal
module instance cache. This makes it possible to resolve
distinct URL’s to the same key, effectively normalizing them
to refer to the same shared module instance.

5.6 State isolation and base libraries
Module loaders facilitate state isolation by virtue of their
separate global namespaces. Code that creates a module
loader can selectively decide what bindings to share with the
created loader via its defineGlobal() and defineModule()
methods, as well as its eval() method.

The standard JavaScript library provides an extremely dy-
namic and mutable inheritance hierarchy for standard object
types such as Object, String, and Array. Each of these
types provides a shared prototype object. In practice, much
of the code of the web takes advantage of the mutability of
these prototypes in order to create new functionality that can
be shared throughout a program. This means it would not
be practical or even desirable to freeze the entire standard
library.

In order to provide full isolation, then, it is necessary to
be able to clone the original base library when creating a
new module loader. However, in order for module loaders
to communicate effectively with one another, it must also be
possible to share a common base library between loaders.
The loader.create() method therefore takes an optional
base argument, which is an opaque object encapsulating the
JavaScript standard library. Programmers can either obtain
the base library of an existing loader:

loader.getBase()

or create a fresh base library:

loader.createBase()

This gives programmers fine-grained control over the shar-
ing of state between loaders.

6. Related work
The literature on modules and modularity in programming
languages is far too vast to summarize here. Below, we
discuss the most closely related systems and those that have
inspired our design.

Java Java provides dynamic loading controlled by class
loaders [Liang and Bracha 1998]. Class loaders are both re-
sponsible for maintaining a mapping between class names
and their implementations in code, and for loading new code
dynamically when classes are requested. Additionally, class
loaders form a hierarchy, with a class loader potentially del-
egating to its parent. The design of module loaders repro-
duces many of these design choices, in particular the cou-
pling of loading with naming and the hierarchy. Of the four
design goals set out by Liang and Bracha, type safety is not
applicable, we do not provide lazy loading, and we accom-
plish user-defined extensibility and multiple communicating
namespaces.

There are two key differences between module loaders
and class loaders. First, sharing is handled differently. Class
loaders share with their parent by delegating. Module load-
ers instead can share with any other module loader they can
reference (likely their children), and share by explicitly giv-
ing access to some modules. This allows module loaders to
create sub-loaders with fewer capabilities.

Second, module loaders can inspect, translate and po-
tentially reject code loaded within them, even nested inside

Modules for JavaScript 9 2011/5/20

multiple additional loaders. In contrast, class loaders can al-
ways directly define code, or delegate to the system loader.

Numerous modules systems have been proposed, spec-
ified, and implemented for Java [Corwin et al. 2003; JCP
2007; Jigsaw 2009; OSGi 2009; Strnisa 2008]. These sys-
tems tend to be far more complicated than ours, often in-
volving deployment and packaging formats, metadata, ver-
sioning information, and linkage specifications. All of the
systems are of course fully compilable. For dynamic load-
ing, the systems rely on Java’s class loader system described
above.

ML The Standard ML module system [Milner et al. 1997],
and related designs are widely influential and are one of
the few designs that, like ours, supports arbitrary nesting of
modules. Unlike our system, ML makes heavy use of explicit
signatures, and like Scheme, supports richer static informa-
tion, in particular types. Additionally, the ML module sys-
tem is non-recursive and supports parameterized modules,
not a goal of our system. Numerous proposals for adding re-
cursive modules to SML exist [Dreyer and Rossberg 2008];
however they strive for expressiveness and static checking
rather than simplicity. OCaml [Leroy 1997] supports a simi-
lar form of simple recursive modules, but requires predecla-
ration of signatures for all recursive modules.

ML module systems typically do not support dynamic
loading, and treat the mapping of modules to files or other
resources as outside the scope of the module system. Al-
ice ML [Rossberg 2007] is an exception here, supporting
static loading of code from remote locations as well as
dynamically-invokable components and component man-
agers, similar to our module loaders. However, these com-
ponent managers apply only to the first-class component
system in Alice ML, as opposed to the entire module sys-
tem. Additionally, the system in Alice ML is significantly
more involved to support the ML type system.

Scheme and Racket Module systems designs in the Scheme
community, as in Chez Scheme [Waddell and Dybvig 1999]
and Racket [Flatt 2002], typically resemble our design—
first-order, untyped, with internal linking. The complexities
of these systems comes from supporting macros, a far richer
form of static information than is present in JavaScript,
where modules only manage names. However, the need to
support macros means that recursive modules are confined
to separate systems, as in Racket’s units [Findler and Flatt
1998; Flatt and Felleisen 1998], where macros live in sig-
natures rather than modules [Owens and Flatt 2006]. Our
design attempts to combine the simplicity of the first-order
systems with the convenience of recursive modules.

The design of Racket also inspired two key aspects of
our module loader design. First, the use of defineModule to
explicitly share module instances between module loaders is
taken from the design of Racket’s namespaces [Flatt et al.
1999] where the operation is named attach. Second, the
language-integrated support for compilers is inspired by a

related feature in Racket’s module system [Tobin-Hochstadt
et al. 2011], which also supports the definition of entirely
new languages.

Other dynamic languages Other dynamic languages such
as Ruby [Matsumoto 2001] and Python [Van Rossum and
Drake 2009] provide simple module systems. Typically,
these systems consist of syntactic sugar over mutable hash
tables, providing no encapsulation and limiting static rea-
soning about scope. These systems do not provide the sand-
boxing and isolation features of module loaders.

7. Conclusion
Today, JavaScript programs stretch to hundreds of thou-
sands of lines and use numerous independently-developed
libraries, yet JavaScript programmers must manage without
a module system. In this paper, we present a module system
that is simple for programmers, handles the complexities of
deployment on the web, and supports flexible dynamic load-
ing of code. We can also extend the capabilities of JavaScript
to support state isolation and language-integrated translation
and compilation from other languages to JavaScript. Our
module system is under development for the next version
of the JavaScript standard.

References
Ajax.org. Ajax.org Cloud9 Editor, 2007. http://ace.ajax.org/.

Jeremy Ashkenas. CoffeeScript, 2010. http://coffeescript.
org/.

James Burke. RequireJS, 2011. http://requirejs.org/.

Caja Team. Google Caja, 2011.

Closure Tools Team. Google Closure compiler, 2009. http:
//code.google.com/closure/compiler/.

John Corwin, David F. Bacon, David Grove, and Chet Murthy.
MJ: a rational module system for Java and its applications. In
Proceedings of the 18th annual ACM SIGPLAN conference on
Object-oriented programing, systems, languages, and applica-
tions, OOPSLA ’03, pages 241–254, 2003.

Douglas Crockford. JSLint, 2002. http://www.jslint.com/.

Ryan Dahl. node.js, 2011. http://nodejs.org.

Kevin Dangoor et al. CommonJS, 2009. http://commonjs.org/.

Derek Dreyer and Andreas Rossberg. Mixin’ up the ML module
system. In Proceeding of the 13th ACM SIGPLAN international
conference on Functional programming, ICFP ’08, pages 307–
320, 2008.

Robert Bruce Findler and Matthew Flatt. Modular object-oriented
programming with units and mixins. In Proceedings of the
third ACM SIGPLAN international conference on Functional
programming, ICFP ’98, pages 94–104, 1998.

Matthew Flatt. Composable and compilable macros: you want it
when? In Proceedings of the seventh ACM SIGPLAN interna-
tional conference on Functional programming, ICFP ’02, pages
72–83, 2002.

Modules for JavaScript 10 2011/5/20

http://ace.ajax.org/
http://coffeescript.org/
http://coffeescript.org/
http://requirejs.org/
http://code.google.com/closure/compiler/
http://code.google.com/closure/compiler/
http://www.jslint.com/
http://nodejs.org
http://commonjs.org/

Matthew Flatt and Matthias Felleisen. Units: cool modules for
HOT languages. In Proceedings of the ACM SIGPLAN 1998
conference on Programming language design and implementa-
tion, PLDI ’98, pages 236–248, 1998.

Matthew Flatt, Robert Bruce Findler, Shriram Krishnamurthi, and
Matthias Felleisen. Programming languages as operating sys-
tems (or revenge of the son of the lisp machine). In Proceedings
of the fourth ACM SIGPLAN international conference on Func-
tional programming, ICFP ’99, pages 138–147, 1999.

Google. Google Web Toolkit. http://code.google.com/
webtoolkit/.

Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. The
essence of JavaScript. In Proceedings of the 24th European
conference on Object-oriented programming, ECOOP’10, pages
126–150, 2010.

Marijn Haverbeke. CodeMirror, 2007. http://codemirror.net/.

JCP. Improved modularity support in the Java™ programming
language, 2007. JSR 294, http://jcp.org/en/jsr/detail?
id=294.

Jigsaw. Project Jigsaw, 2009. http://openjdk.java.net/
projects/jigsaw/.

Anton Kovalyov. JSHint, 2010. http://jshint.com/.

Xavier Leroy. The Objective Caml system, Documentation and
User’s guide, 1997. URL http://caml.inria.fr/.

Sheng Liang and Gilad Bracha. Dynamic class loading in the Java
virtual machine. In Proceedings of the 13th ACM SIGPLAN con-
ference on Object-oriented programming, systems, languages,
and applications, OOPSLA ’98, pages 36–44, 1998.

Yukihiro Matsumoto. Ruby in a Nutshell. O’Reilly Media, 2001.

Leo A. Meyerovich, Arjun Guha, Jacob Baskin, Gregory H.
Cooper, Michael Greenberg, Aleks Bromfield, and Shriram Kr-
ishnamurthi. Flapjax: a programming language for Ajax appli-
cations. In Proceeding of the 24th ACM SIGPLAN conference
on Object oriented programming systems languages and appli-
cations, OOPSLA ’09, pages 1–20, 2009.

Robin Milner, Mads Tofte, Robert Harper, and David MacQueen.
The Definition of Standard ML - Revised. The MIT Press, May
1997.

OSGi. OSGi service platform core specification, 2009. http:
//www.osgi.org/.

Scott Owens and Matthew Flatt. From structures and functors to
modules and units. In Proceedings of the eleventh ACM SIG-
PLAN international conference on Functional programming,
ICFP ’06, pages 87–98, 2006.

Andreas Rossberg. Typed Open Programming—A higher-order,
typed approach to dynamic modularity and distribution. Phd
thesis, Universität des Saarlandes, Saarbrücken, Germany, Jan-
uary 2007.

Rok Strnisa. Fixing the Java module system, in theory and in prac-
tice. In Proceedings of FTfJP, pages 88–99. Radboud Univer-
sity, July 2008.

Sam Tobin-Hochstadt, Vincent St-Amour, Ryan Culpepper,
Matthew Flatt, and Matthias Felleisen. Languages as libraries.
In Proceedings of the 32nd ACM SIGPLAN conference on Pro-

gramming Language Design and Implementation., PLDI ’11,
2011.

Guido Van Rossum and Fred L. Drake. Python 3 Reference Man-
ual. CreateSpace, 2009.

Oscar Waddell and R. Kent Dybvig. Extending the scope of syn-
tactic abstraction. In Proceedings of the 26th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages,
POPL ’99, pages 203–215, 1999.

Modules for JavaScript 11 2011/5/20

http://code.google.com/webtoolkit/
http://code.google.com/webtoolkit/
http://codemirror.net/
http://jcp.org/en/jsr/detail?id=294
http://jcp.org/en/jsr/detail?id=294
http://openjdk.java.net/projects/jigsaw/
http://openjdk.java.net/projects/jigsaw/
http://jshint.com/
http://caml.inria.fr/
http://www.osgi.org/
http://www.osgi.org/

	Introduction
	Design space
	Scripting convenience
	Static scope in a dynamic environment
	Naming on the web
	Diverse delivery platforms
	Sharing and isolation
	Extensible compilation

	Design overview
	Importing and exporting
	Recursive modules
	Requiring external modules
	Local and standard modules
	Dynamic loading and evaluation
	Custom module loaders

	The core system
	Static scope
	Dynamic reflection
	Resolution
	Linking
	Evaluation
	External modules

	Module loaders
	The system module loader
	Managing global namespaces
	Dynamic evaluation
	Creating custom loaders
	Resolver objects
	State isolation and base libraries

	Related work
	Conclusion

